
A0-Al00 593 NAVAL POSTGRADUATE SCHOOL MONTEREY CA F/S 9/2

CONCURRENCY CONTROL OVERHEAD OR CLOSER LOOK AT BLOCKING VS. NON-ETC(U)

UNCLASIFIED NPS5281-005 N

EEEEEEE~hEE

NPS52-81-005

NAVAL POSTGRADUATE SCHOOL
Monterey, California

" ' -

CONCURRENCY CONTROL OVERHEAD OR

CLOSER LOOK AT BLOCKING

VS.

NONBLOCKING CONCURRENCY CONTROL MECHANISMS

Dusan Z. Badal

June 1981

Approved for public release; distribution unlimited

Prepared for:
Naval Postgraduate School
Monterey, Ca. 93940

8a 6. 042f

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral J. J. Ekelund D. A. Schrady
Superintendent Acting Provost

The work reported herein was supported by the Foundation Research
Program of the Naval Postgraduate School with funds provided by the
Chief of Naval Research.

Reproduction of all or part of this report is authorized.

This report was prepared by:

L2
DUSAN Z. BADAL

Assistant Professor of
Computer Science

Reviewed by: Released by:

"Z ,TO'RD H 'MET an- WIL.IAM M. TOLLES

Depare of' Pu r Dean of Research
Science

UNCLASS I FIED
SECURITY CLASSIFICATION OF THIS PAGE (Whuen Date Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
I. REPORT NUMBER (. GOVT ACCEISON NO. 3. RECIPIENT'S CATALOG NUMBRN

NPS52-81 -005 At- 146
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

"L'oncurrency Control Overhead or Closer Look at
Blocking vs. Nonblocking Concurrency Control S. PERFORMING ORG. REPORT NUMBER
Mechanisms4

-7 AUTHORf) I. CONTRACT OR GRANT NUMBER(s)

Dusan Z/adal
9. PERFORMI4G ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

AREA & WORK UNIT NUMBERS

Naval Postgraduate School /

Monterey, CA 93940
I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPOQT OATS

// June 1981
Naval Postgraduate School 13. MU ' OWAGES
Monterey, CA 93940

14. MONITORING AGIENCY NAME & ADDRESS(ill iffrnt from Controlling Office) 15. SECURITY CLASS. (of t is reo~se)

Unclassified

IS. OCEL ASSI FIC ATON/DOWN GRAOING
SCHEDULE

I. OISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abetrect entered In Block 20. It diffe,eit from Reet)

IS. SUPPLEMENTARY NOTES

This report has been published in the Proceedings of the Fifth Berkeley
Conference on Distributed Data Management and Computer Networks.

It. KEY WORDS (Continue an reverse aide if neeseary od idmntify by block number)

Distributed Databases, Synchronization, Serialization, Concurrency Control

20. ABSTRACT (Continue m nv, ev, side It neceesary ad idn ify by block nomber)

In this paper we divide concurrency control (CC) mechanisms for dis-
tributed DBMS's (DDBMS) into three classes. One class consists of blocking
CC mechanisms and two classes contain nonblocking CC mechanisms. We define
CC overhead and derive it for conflicting and nonconflicting transactions for
each class of CC mechanisms. Since CC overhead is dependent on CC mechanism
only, it can be used as a metric for comparison of CC mechanisms and as a
measure of CC load on DDBMS resources. We also describe two new nonblocking
distributed concurrenc y control mechanisms which use the concept of multiple

DD 'JeA'" 1473 CITION OFI NOY .. IS O..JLRTC UNCLASSIFIED "
S/N 01020146601 CLASSIFIG

SErCURITY CL.ASIF~ICATION Of THIS PlAGE (Whnt DateIf

UNCLASSIFIED
_iJ' tTV CLASSIFICATtON OF THIS PAGE(Whos Data Entered)

20. Aata object versions. One is based on time stamp ordering of transaction

z-j execution and the other is based on nonserializable
execution detection

and recovery to serializable execution. We compare both with distributed

two-phase locking.

UNCLASSIFIED
S6CUIIITY CLASSIFICATION OF THIS PAGU(

"Mle DIte Entered)

Concurrency Control Overhead or Closer Look at Blocking
Vs.

Nonblocking Concurrency Control Mechanisms

0. Z Badal

Department of Computer Science
Naval Postgradute School

Monterey, CA 93940

Abstract

In this paper we divide concurrency control (CC) mechanisms for distributed DBMS's
(DDBMS) into three classes. One class consists of blocking CC mechanisms and two
classes contain nonblocking CC mechanisms. We define CC overhead and derive it for
conflicting and nonflicting transactions for each class of CC mechanisms. Since CC
overhead is dependent on CC mechanism only, it can be used as a metric for comparison
of CC mechanisms and as a measure of CC load on DDBMS resources. We also describe
two new nonblocking distributed concurrency control mechanisms which use the concept
of multiple data object versions. One is based on time stamp ordering of transaction
execution and the other is based on nonserializable execution detection and recovery to
serializable execution. We compare both with distributed two-phase locking.

1. Introduction

Over the last few years the importance of distributed DBMS's has been widely
recognized. Consequently there has been considerable research on the most important
aspect of distributed DBMS--concurrency control (CC). This paper argues that despite
numerous papers on concurrency control [TH076, TH079, BER78, ASL76, ST078, BAD78,
ELL77, LAM76, LIN79, KUN79, REE78, RIE79, MOL79, BAD79b, KAN79, LEL78, HER79]
there are very few generic CC mechanisms or algorithms and as a result the majority of
CC proposals are extensions, variations or modifications of these. This is not to say that
such CC proposals are less original. What we are arguing here is that most CC
mechanisms are dissimilar to a far less degree than they are similar and this fact then
suggests that one should attempt to classify them and to compare the properties of each
class.

-- : ;, i | "1

In this paper we divide CC mechanisms into three classes. Our CC classification
criteria are based on conventional operating system concepts of mutual exclusion and
synchronization, the degree of concurrency and the transaction serializability enforcement
Policy concurrency control mechanisms use to guarantee that the interleaved and
concurrent execution of transactions is the same as if the same transactions were
executcd in some serial order, i.e., one after another. Such policy can be to avoid,
prevent, or detect and resolve nonserializable executions. By the degree of concurrency
we mean the degree of concurrent execution of conflicting transactions. For example, if
two executing transactions need to access at the same time a set of data objects, then
they will conflict. In this scenario the degree of concurrency is the number of
transaction concurrent actions allowed by the concurrency control mechanism on the data
objects on which transactions conflict or interfere. More precisely, the degree of
concurrency as defined in [BAD8O] is an average number of data objects exclusively
held by a transaction during its execution time. This definition reflects the fact that if
transactions interfere over the set of data objects, then the number of interfering
transactions which cannot execute concurrently is directly proportional to the number of
data objects exclu.sively held by one transaction during its execution.

The seconds part of this paper describes two new distributed nonblocking CC
mechanisms. We also derive CC overhead for each class of CC mechanisms. The CC
overhead is defined in terms of synchronization messages and the resulting delay. We
derive CC overhead for non-interfering transactions and two cases each of two
conflicting transactions. We consider the analysis of two transaction conflicts an
appropriate demonstration of the differences among CC mechanism classes. Moreover,
some recent results [GRA80] indicate that the probability of three or more transactions
conflicting at the same time is extremely low.

2. Classification of CC Mechanisms

There are a number of possible classifications of CC mechanisms and it is not easy
to choose one. We consider here the classification introduced in [BAO79a] which is
quite consistent with the traditional operating system concepts. We distinguish three
basic classes of consistent CC mechanisms. (A consistent CC mechanism is serializable or
results in daibase states identical to those due to some serial execution, called
serialization order, of the same set of transactions.) The MES or mutual exclusion set
class includes any CC mecharsm that satisfies the following characteristics: transaction
can execute only if it has an exclusive access, at some time t, to all data objects at
which it writes and a shared access to all data objects it reads, In other words,
concurrent execution of transactions is based on a mutual exclusion over the set of data
objects accessed by one transaction. Two techniques employed to achieve mutual
exclusion over the set of data objects are two-phase locking [ESW76, GRA78, STO78,
ELL771 and sequence numbers (or time stamps) [THO79, TH076, R0S78]. Another

2

characteristic of MES class is that the serialization order is always determined at
execution time and it cannot be a priori determined or guaranteed. MES class can be
further divided by other classification criteria such as centralized or decentralized
control and processing. Typical examples of MES class can be found in [STO78, GRA78,
TH079, ROS78, ELL77, ALS76, MOL79, KUN79].

The second class of CC mechanisms is S or synchronization class. The usual
technique to achieve synchronization involves the use of a unique sequence number
(often called a time stamp) assigned to each transaction. The distinct property of S class
CC mechanisms is that the transactions must execute in the order of their time stamps,
and thus if necessary an a priori ordering of transaction execution can be guaranteed.
Again, one could further classify S class according to the way sequence numbers are
generated, whether the transaction can have its sequence number changed, etc. The
typical representation of S class CC mechanisms include [LAM78, BAD78, LEL78, BER78,
REE78, KAN79, HER791 We note here that although the CC mechanism in [REE78] is
based on time stamp order, in execution it is fundamentally different from other CC
mechanisms. The S class of CC can be divided into two subclasses: strong and weak
synchronization. The strong S (or S) subclass [BAD78, KAN79) requires that
transactions execute in the order of their original sequence numbers. This means that
transactions should be rejected only because they violated integrity constraints. In
another words, no transaction executing under SS class should be rejected due to
synchronization. We believe a demand exists for a type of CC mechanism that can
guarantee an a priori ordering of transaction execution. For example, most real time
DBMS's, like air traffic control and command and control, would require strong
synchronization. The weak synchronization [BER78, LAM78, LIN79] (or WS) subclass still
requires the execution of transactions in the order of their sequence numbers but the
sequence numbers can be reassigned. Thus transactions can be rejected because of
synchronization or integrity constraints violation. Therefore, the order of transaction
execution cannot be guaranteed. The SS subclass requires data object preclaiming, i.e.,
data objects are known and claimed before transaction execution; otherwise SS class will
cause serial execution of all transactions. The WS subclass allows run time claiming of
data objects.

The third class of CC mechanisms, called MEO is based on the mutual exclusion over
one data object at a time and a set of sequencing rules. An example of MEO class CC
mechanism can be found in [BAD79b] and in this paper.

The above classification scheme reflects the degree of concurrency and the degree
of optimism about the probability of transaction conflicts, i.e., a way in which each CC
class minimizes CC overhead associated with conflicting and nonconflicting transactions
and in a way in which each CC class guarantees serializable (SR) execution. The MES
class simply prevents non-SR executions by a pessimistic conflict resolution policy which

3

considers almost any interference as a source of non-SR execution. The S class also
prevents non-SR executions by using a less rigid but still pessimistic conflict resolution
policy (time stamp execution order). Finally, the MEO class allows non-SR execution to
occur and then to recover to SR execution by using an optimistic transaction conflict
resolution policy. Such policy is optimistic in a sense that it assumes that not only
transactions conflict infrequently but also that many transaction interferences do not
necessarily result in non-SR execution.

The MES class is the least optimistic and provides the lowest degree of concurrency,
while the MEO class is the most optimistic and provides the highest degree of
concurrency. In order to explain this clearly we use the following example. Let's
consider two transactions T[i] and T[j] which arrived a short time apart and which
access the same set of data objects 1, 2, 3 and 4. As shown in [BAD79b] the sufficient
and necessary conditions for SR execution of transactions can be expressed in terms of
sequencing the transaction actions on data objects they access. The execution of two
interfering transactions is SR if T[i] and T[j] executed in the same order on all data
objects on which they interfered in read-write or write-write manner. Now consider two
cases of T[i] and T[j] execution. First suppose that T[i] must write in the order 1, 2, 3,
4 and T[j] in the opposite order. Then if T[i] and T[j] execute under the MES, MEO or S
class of CC mechanisms, they can execute serially, i.e., one only after other terminated.
However, if T[i] and T[j] access 1, 2, 3 and 4 in the same order, then MES class of CC
will again force serial execution. The S and MEO class of CC would allow one transaction
execution to follow another just one data object behind. However, this case could occur
in the S class only if two conditions are satisfied. First, the sequence numbers i, j must
differ by one increment, i.e., i<j or j<i and there is no sequence number k such that k<j
and i<k or ki and j<k. Second, the transaction executed later must have a sequence
number Iarger that the preceding transaction. As this is not generally the case, the S
class rule requiring transactions to execute in order of their time stamps forces any
transaction accessing some data object to follow one of two rules: wait on accesses by
all transactions with smaller sequence numbers, or access the object and then either
reject any transaction with a smaller sequence number or, if the access by the smaller
number is allowed, rollback.

Thus, although the S class of CC mechanisms in principle would allow the trailing
execution of two transactions, it cannot do so fully because of the sequence number
transaction execution rule and the uncertainty about adjacency of sequence numbers if
they are generated at each site, i.e., in distributed manner. To explain this phenomenon
in another way, in MES class CC the sequencing decision is essentially local to the
interfering transaction, while in S class it can be either global to all transactions, as in
(LAM76, BAD79, KAN79, LEL78, HER79], or partially localized, as in [BER78].

The MEO class of CC allows transactions to trail each other because their

4

interleaving is constantly checked for its serializability [BAD79b]. As in MES class, the
sequencing decision is local to the interfering transactions only, and thus it is not
affected by other transactions in the system.

3. Concurrency Control Overhead

In order to investigate CC overhead for each CC class we must do hree things.
First, define CC overhead. Second, choose or construct a representative CC mechanism
for each class. Third, select some scenario. The scenario we will consider here is a
partially relicated n-node ODBMS. We will assume that our hypothetical t-ansaction
running under CC class representative CC mechanism accesses e nodes for transaction
execution and r nodes for the update of replicated data objects.

We define two types of CC overhead. One type, called CC no-conflict, is a constant
overhead per transaction due to the CC mechanism. It has three inseparable aspects. One
is CPU and I/O load at each node (due to CC information processing-such as messages,
locks or time stamps) and the network load (due to CC messages). The second aspect is
a delay experienced by the transaction before CC mechanism allows it to execute. CC
delay has two parts. One is the communication delay due to CC messages and their
sequencing. The second part is due to sharing of DDBMS resources with other
transactions or other processes. The second part of CC delay can be evaluated only by
a simulation or possibly by a detailed analysis using standard queueing theory approach.
This is so because the second part of CC delay is a function of several system and load
parameters. However, the first part of CC delay is the function of CC mechanism only
and can be easily established for most CC mechanisms. We will therefore consider the
first part of CC delay only and from now on we refer to as the CC delay. The third
aspect of CC no-conflict overhead is the number of CC messages (and their sequencing)
needed to guarantee a robust and serializable execution of the transaction. The CC delay
is intimately related to the number of CC messages and their sequencing. This paper
considers only the CC messages and the associated delay as the measure of CC no-
conflict overhead.

The second type of CC overhead, called CC conflict overhead is associated only with
conflicting transactions and it consists of the same three aspects as the CC no-conflict
overhead. Again as in the case of no-conflict CC overhead we consider CC conflict
overhead only in terms of CC messages and corresponding delay. We consider CC
conflict overhead for all three classes of CC mechanisms in two simple scenarios. Each
scenario consists of two interfering transactions T[i] and T[j). The transactions T[i] and
T[j] access (or read and write) three data objects 1, 2 and 3 at nodes 1, 2 and 3. In
scenario I they access 1, 2 and 3 in the reverse order and in the scenario 2 in the same
order. In each scenario both transactions arrive a short time apart.

AM5

In order to analyze CC overhead for each class of CC mechanisms we must select
representative for each class For MES class we use distributed two-phase locking and
for MEO class we use distributed CC mechanism described in [BAD79b]. For S class we
analyze distributed nonblocking CC mechanism proposed in this paper.

We consider here CC mechanisms which produce serializable executions and have a
minimum degree of robustness obtained by using two-phase commit (2PC) or its
equivalent.

3.1 MES Class CC Overhead

A description of distributed two-phase locking (D-2PL) CC mechanisms has
appeared in several papers [GRA78, STO78, RIE79, LID79, GRAa0a] and we repeat the
basic rules:

i. each node has a concurrency controller managing data local to that site

2. any transaction which reads data object can read only after it has placed read lock
either on the unlocked data object or read-locked data object

3. any transaction which needs to write on data object can do so only after it write-
locked the unlocked data object

4. any transaction can unlock any of its already read-locked or write-locked data
objects only after it read-locked or write-locked all data objects needed for its
execution

The transaction execution under D-2PL CC mechanism with centralized two-phase
commit (2PC) has two steps:

1. Transaction locks at e sites and executes at e sites

2. Transaction coordinator sends r "lock and prepare to commit and update" messages
and (e-I) "prepare to commit and to delete lock" messages during the first phase of
the 2PC and waits for acknowledgement. During the second phase of 2PC the
transaction coordinator sends (e+r-1) "commit (or abort) and delete locks" messages.
After all sites acknowledged previous messages the coordinator site commits (or aborts)
and releases its locks.

Thus the CC no-conflict overhead for D-2PL is as follows.

CC delay = 4T

6

number of CC messages =4(e+r- 1)

where T is the average communication delay between one sender and several
destinations.

As mentioned earlier, we consider CC conflict overhead for all three classes of CC
mecfrinisms in two simple scenarios. We consider the conflict of two transactions only.
The trAnsactions T[i] and T~j] access three data objects at nodes 1, 2 and 3. We assume
each access to be exclusive, i.e., at each node transactions read and write. In scenario 1
they access 1, 2 and 3 in the reverse order, and in scenario 2 in the same order. In
each scenario both transactions arrive a short time apart. In scenario 2 the transaction
which arrived later will have to wait and thus the D-2PL conflict overhead for scenario 2
consists of the delay 3DELTA T + 4T. where DELTA T is the average processing time at
each node and T is the average delay between one sender and several destinations. The
delay 4T is due to 2PC. In scenario 1 the CC conflict overhead, assuming a centralized
deadlock detection and resolution, is as follows. First, the conflicting transactions must
wait for some fixed period of time, say Tw, and then report to the deadlock detector
(delay 2T) which resolves the deadlock by roiling back one transaction. Thus the CC
conflict overhead in scenario 2 consists of delay Tw + 2T + TROL, where TROL is the
transaction rollback time. Assuming centralized deadlock detection the number of CC
messages is 4 (2 from each transaction to deadlock detector) + 2 (rollback of one
transaction from one site when deadlock occurred at site 2). By averaging CC conflict
overhead from both scenarios we obtain:

CC delay = 1/2(6T + 3 DELTA T +Tw + TROL)

number of CC messages = 3

3.2 S Cl ass CC Overhead

The S class is not easy to analyze because two radically different time stamp based
strategies can be used to keep database consistent. One generally accepted strategy is
to execute updates as soon as possible so that the incoming transactions are not
delayed. In another words, such strategy results in a continuous adjustments to keep
database consistency. Most of S class CC mechanisms use this strategy. The second
strategy proposed in [6A078] is to insure database consistency whenever it is
necessary, e.g., when read on data objects with a given time stamp is to be executed all
updates on that data object with smaller time stamps are fetched and executed. Such
strategy emphasizes the fact that it is not important that the database is consistent
continuously all the time as long as it is guaranteed that each transaction executes on
consistent data.

7

In this paper we will analyze only the first strateg. Even such analysis is difficult as
there are some C class CC mechanisms which are up to some degree adaptive, i.e., their
CC overhead can be decreased (or increased) for example, by distributing and clustering
primary copies at different sites or by distributing data and concurrency control at
different sites as in SOD-i [BER78. Since in the MES class of CC we have analyzed
two-phase locking which does not require any a priori assumptions, as for example, a
priori known set of transactions or guaranteed FIFO communication network protocol we
limit S class analysis to CC mechanisms which also do not require any a priori restrictive
assumptions. The S class CC mechanism we investigate is described for the first time in
this paper. It is based on the concepts of data object logs as described in [BAD791.d.
multiple versions of data objects and the enforcement of time stamp ordering oi
transaction execution. The proposed algorithm allows transaction rejection (due to
integrity constraint violation or due to synchronization) and its resubmission, and
therefore it belongs to a WS subclass of CC mechanisms. The CC mechanism is made
robust by using two-phase commit and it can be described as follows.

Each named data object (DO) in the database has associated with it a log, called 00
log. DO log contains entries by each transaction which read or updated a given DO. DO
log entry consists of transaction ID, its time stamp, the list of fields and records (or
tuples and attribute fields) transaction read or updated, and the status of read or update
(temporary, aborted, committed). Transaction generates D0 log entry after it has
executed access to a given DO and it deletes its DO log entries during the two-phase
commit (2PC). CC mechanism described here is nonblocking as opposed to any CC in
MIES class which are blocking. That is to say in MES class CC mechanisms one transaction
can block or prevent other transactions from accessing the data objects (DO) it needs.
The general idea underlying proposed S class CC mechanism is that each transaction
generates a new version of data objects it updated. Such versions are temporary until
transaction is committed and then they become permanent. However, temporary versions
are seen by any other transaction as new versions of data objects. Basic rule is that
new temporary version of 00 can become permanent only after the preceding temporary
version becomes permanent. For example, if transaction TI generated version DO[T1] of
DO and T2 generated version OO[T21 of DO from DO[T 1], then DO[T2) can become
permanent only after 00(T1] becomes permanent. In other words, each transaction makes
its output immediately available to any other transaction and therefore, it does not block
other transactions. Since the execution of transactions must occur in time stamp order
only serializable executions are generated.

After the transaction made an access to 00 or its latest version, and generated DO
log entry, the DO log algorithm pushes DO log entry onto DO log. 00 log is stack-like
structure with push operation only. Deletion of DO log entries can occur in any order.
Any push operation triggers the following actions. New 00 log entry is checked whether
it conflicts with other DO entry below it in the DO log. If it does, the time stamps of DO

8

log entries are compared and out-of-time-stamp execution can be detected for update-
update or update-read conflicts if the new DO entry has smaller time stamp. If out-of-
time-stamp execution is detected, the transaction which generated the latest entry to
DO log is rejected. This means that all its so far generated DO log entries are marked as
aborted during 2PC. Consequently, any other transaction which used the output of
aborted transaction will be aborted as well. However, if no out-of-time-stamp execution
is detected, then 00 log algorithm allows the transaction to proceed in its execution.
After the transaction finished its execution, it will use transaction coordinator and 2PC to
post the updates to replicated DO's as well as to check at DO logs of replicated DO's
whether the updates are in the time stamp order. It will also check by the first phase of
2PC whether the preceding conflicting DO log entries are marked as commit or abort.
The acknowledgement of the first 2PC message is generated only after preceding
conflicting DO log entries are either comitted or aborted. After the acknowledgement
transaction coordinator either aborts (if any preceding conflicting transaction aborted or
if any site decides to abort this transaction) or it commits (if no out-of-time stamp
execution is detected and all preceding conflicting transactions committed). If transaction
commits, then its updates are made permanent. The same message from the coordinator
(i.e., the 3rd message of 2PC) to all sites accessed by the transaction marks DO log
entries as committed (or aborted). DO log algorithm responds to the third message of
2PC (commit) by checking whether there is any DO log entry (i.e., below or above in the
stack) which conflicts with committed entry. If there is none, the committed entry is
deleted (or marked as deleted if it is to be used for system recovery). If there is a
conflicting entry, then the committed entry can be deleted only after the conflicting
entries are marked as committed or aborted. Finally, all involved sites acknowledge the
3rd message of 2PC and the coordinator site deletes (or markes as deleted) it DO log
entries. The DO log algorithm responds in the same fashion to "abort DO log entry"
messages.

As can be seen from the description of this CC algorithm, the time stamps are being
used for resolution of transaction conflicts and for serializability of conflicting transaction
execution. The DO logs are dynamically changing and their size is proportional to the
frequency of transaction conflicts. Described CC mechanism is optimistic one as it
assumes that the conflicting transactions will generate an out-of-time-stamp execution
with probability lower or at worst equal to the probability that they generate execution
in the time stamp order. This implies that at worst case 50% of conflicting transactions
will be aborted and executed serially (i.e., as if they executed under MES class of CC).
However, at least 50% of conflicting transactions will execute in much shorter time
because of nonblocking character of this CC mechanism. We want to point out that
although the proposed CC mechanism is optimistic it is not completely optimistic because
it uses time stamp ordering for transaction conflict resolution. This to say that not all
out-of-time-stamp executions are necessarily nonserializable. For example, assume that
transaction TI updates DO's 2, 3 and 4, and T2 updates 1, 3 and 5. Suppose they

9

conflict in out-of-time-stamp order at 3. Because of time stamp order execution rule, TI
or T2 or both will be aborted even if their execution is serializable. Of course, if TI and
T2 executed at 3 in time stamp order, then they can execute concurrently.

Assuming the same T I and T2 executing under MES class of CC then T I or T2 will
be blocked at 3 and will have to wait for at least 3T + DELTA T. We note that the CC
mechanism which is truly optimistic, i.e., one which is based on nonserializable detection
and recovery has been proposed in [BAD79b] and is also described in this paper later
on. If Ti and T2 should execute under such truly optimistic CC mechanism, they could
execute concurrently regardless at what order they accessed data object 3.

Now we derive CC overhead for the proposed CC mechanism. No-conflict CC
overhead is easily seen to be:

CC delay = 4T

number of CC messages = 4(e+r- I)

The conflict overhead for scenario I when Ti and T2 read and update and conflict at
sites 1, 2 and 3 in the opposite order is as follows. Let's assume that Ti has smaller
time stamp. Then TI can detect out-of-time-stamp order execution at 1, 2 or 3, where
detection at 1 or 3 are extreme cases. We consider therefore detection of out-of-time-
stamp execution at 2 as an average CC overhead. When TI reaches site 2 and detects
out-of-time-stamp execution (i.e., T2 already made DO log entry at site 2) Ti is aborted
by two-phase commit mechanism from site 2. TI will have to be resubmitted with a new
or the same time stamp.

If T2 generated new DO version at site I from DO version generated by Ti, then T2
will abort when it attempts to commit. T2 then has to be resubmitted with a new or old
stamp. Of course, TI and T2 resubmission could lead to a cyclic restart and rejection.
We assume here that some simple method can prevent such situation, e.g., the system
can delay one transaction until the other one commits. However, if TI is aborted at site
I before T2 generates new version of DO from Ti output, then T2 can commit. Let's
assume the former case and then CC delay is 3T (time T2 needs to detett that TI
aborted and to abort itself). The number of CC messages is 3 (due to TI abort) + 6 (due
to T2 abort).

The conflict CC overhead for scenario 2, when TI and T2 read and write and conflict
at sites 1, 2 and 3 in the same order is as follows. If TI, which has smaller time stamp,
reaches site I before T2, then T2 can follow Ti's execution one site behind. This means
that T2 can commit immediately after TI commits. The only CC overhead is the delay
DELTA T experienced by T2. There are no CC overhead messages in scenario 2.

10

-- ----- -

Averaging the CC conflict overhead from both s:enarios we obtain:

CC delay - l/2(3T + DELTA T)

number of CC messages = 1/2(3 + 6)

3.3 S Class Overhead Revisited

Comparing CC overhead of MES and S class we can see that they are quite similar.
In particular for -non-conflicting transactions, which are vast majority in most applications,
the CC no-conflict overhead is identical. Of course, the main reason is the use of two-
phase commit (2PC) for insuring the robustness. 2PC is a fault-tolerant communication
protocol intended to tolerate some faults while still performing the intended function
which is to ensure atomic property of one operation at different sites as, for example,
update of multiple copies or release of locks or atomicity of transaction itself. Thus 2PC
although not designed for or derived from the two-phase locking (2P1) is nevertheless
very natural way of implementing robust 2PL The point is that 2PL and other MES class
CC mechanisms are blocking mechanisms when by locking some data object other
transactions are blocked or prevented from accessing the same data object. Since 2PL is
blocking it is important that once the transaction commits the locks are explicitly deleted
as soon as possible and in a reliable fashion. 2PC serves very well that purpose.
However, S and MEO classes of CC mechanisms are nonblocking and therefore, there is
no pressing need to use 2PC in order to achieve the same degree of robustness. As a
matter of fact the use of 2PC for nonblocking CC mechanisms is a major drawback for
such mechanisms as 2PC negates their inherent advantages and makes them, at least in
terms of CC overhead, equivalent to blocking CC mechanisms. Of course, the major
advantage of nonblocking CC mechanisms is that they are nonbiocking and therefore,
there is no need to delete (or to mark as deleted) DO log entries (or other structures)
used for serializability as soon as possible after transaction terminated. Notice that the
proposed CC mechanism can use one structure, DO logs, for recovery and concurrency
control as well. On the contrary, blocking CC mechanisms (NEO class) use two distinct
structures--lock tables for concurrency control and logs for recovery.

Considering CC mechanism described in the previous section of this paper we will
address the following problem. Can we modify this algorithm in such way that its
robustness is preserved but its CC overhead is decreased by eliminating 2PC? The
answer to this question is positive and we indicate here what modifications are needed.
Consider the following modifications. Let's assume nonconflicting transaction Tn. Once Tn
terminated execution, i.e., it did not execute out-of-time-stamp order at any 00 it
accessed, Tn instead of committing by 2PC its DO versions (as permanent DO versions)
will just change its status at the site it entered and will exit the system (called initiating
site) from executing to terminated. This can only happen if the initiating site knows that

11

conflicting preceding transactions already committed. This can be accomplished by CC
overhead messages to such transactions initiating sites. Then Tn will use the ongoing
network traffic to piggyback its "delete my 00 log entries and commit my DO versions."
For example, if later on some other transaction TI (with larger time stamp) should
interfere with Tn's not yet deleted DO log entry, Ti can interrogate Tn's initiating site
(DO log entry now must contain the address of that site) about Tn's status. This can
happen either when T I "bumps* into Tn's DO' log entry for the first time or after TI
terminated but before TI can be released from the system. In another words, T1 has to
know whether Tn terminated so that the DO versions it computed from Tn versions can
be made permanent by piggybacking its "delete DO log entries and commit my 00
versions." We note here that blocking CC mechanisms cannot use piggybacking of
messages because locks must be deleted as soon as possible.

We now analyze 2PC protocol. A traditional concept of 2PC allows any site to
abandon transaction which already executed at that site but it has not committed yet.
The major reason for such abort by the site is blocking character of 2PL. In another
words, as transaction already locked and executed at such site (and therefore, there is
no reason to abort because of program execution failure at that site), then the only
reason the site would want to abort is that the resources blocked by a given transaction
have to be released. Therefore, in 2PC the first message to all sites involved in
transaction execution is intended to verify that none of the sites unilaterally aborted
transaction. Assuming that short duration site failures do not constitute the reason to
abort the transaction, then the first phase of 2PC in 2PL is needed solely to verify that
the transaction was not aborted at any site and that its resources at that site are still
sequestered [LID791 or blocked. The second phase of 2PC is then intended to notify
each site either to abort or to commit, i.e., to make transaction generated output
available to user or end other transactions. (Good description of what types of
transaction output should be released or deterred until commit can be found in
(GRA8Oa].)

We shall now argue why the proposed CC mechanism does not require 2PC while
still being robust. In the proposed CC mechanism transaction output becomes available
immediately after the transaction executed at a given site. (in the proposed CC
mechanism there is no equivalent of traditional 2PC commit point.) Moreover, since the
proposed CC mechanism is noniblocking, i.e., it does not block site resources after
transaction executed at that site, then there is no reason why the site should abort the
transaction. Again we assume that site short duration failures do not constitute the
reason to abort the transaction at that site. Thus the proposed CC mechanism assumes
that once the transaction terminated successfully its execution, then in terms of 2PC all
of its sites already agreed to commit. Therefore, the proposed CC mechanism must only
guarantee that the second phase of 2PC is performed. This mans that "delete (or mark
as deleted) my DO log entries and iommit (i.e., make permanent) my DO versions"

.12

messages to each site involved in transaction execution are delivered reliably but not
necessarily as distinct messages. Because of nonbiocking character of the proposed CC
mechanism such messages and their acknowledgements can be piggybacked on the
ongoing network traffic. If the messages are piggybacked, then in the worst case the CC
no-conflict delay is 2T and there are 2k messages, where k is a number of transactions
which are terminated but whose DO entries were not deleted yet. In the best case there
is no CC no-conflict delay and no CC messages. Assuming the best and the worst cases
occur with the same probability then the average CC no-conflict overhead is.

CC delay - T

number of CC messages - k

If the messages are not piggybacked, then no-conflict CC overhead is:

CC delay - 2T + T -3T

number of CC messages - 2(e+r-1) + k

CC conflict overhead for the modified version of time stamp based S class CC
mechanism described in this section can be derived as follows. Consider scenario I when
two transactions, say TI and T2, read, update and conflict at sites 1, 2 and 3 in opposite
order. Suppose that first out-of-time-stamp execution occurs at site 2. Then transaction
which made detection will abort itself by changing its status at its initiating site to
aborted. The second transaction when it terminates sends "what is your status"
messages to the initiating site of transaction with which it as far as it knows conflicted in
the time stamp order (i.e., one which precedes it in 00 logs). Acknowledgement of such
message in scenario 1 is "aborted" message and the transaction changes its status to
aborted as well. Of course, the change of transaction status to aborted means that the
aborted transaction will piggyback on ongoing network traffic "delete my DO log entries
and my DO versions" messages to all sites where it executed. Assuming the above
described sequence of events (i.e., Ti detects out-of-time-stamp execution and sends
abort to its initiating site /delay T and 1 messages/; T2 executes at site 1 (or 3)
resulting in delay DELTA T and then T2 exchanges 2 messages with initiating site of Ti
/delay 2T/) the CC no-conflict overhead is:

CC delay = 3T + DELTA T

number of CC messages = 3

CC conflict overhead for scenario 2 is:

CC delay = DELTA T

13

number of CC messages = 0 (as both TI and T2 terminate at the same site 3)

Averaging CC conflict overhead from both scenarios we obtain:

CC delay = 1/2(3T + 2 DELTA T)

number of CC messages - 1/2(3)

3.4 MEO Class CC Overhead

MEO class consists of nonblocking CC mechanisms. This means that their output is
available to any other process during transaction execution. The MEO class CC
mechanism we analyze here is described in (BAD79b] and it differs from the one
described in section 3.3 of this paper in one major respect--it is not based on time
stamp order of transactions execution. It is based on nonserializable execution detection
and recovery to serializable execution. This gives the MEO class higher degree of
concurrency because some out-of-time-stamp order executions which are serializable
and which would be rejected by S class CC mechanisms can be realized under the MEO
class of CC.

The algorithm can be described best by comparing it to the CC mechanism described
in section 3.3 of this paper. Both CC mechanisms use DO logs. However, the MEO class
algorithm detects nonserializable executions as follows. When transaction Tn made an
access to DO it pushes DO log entry onto DO log. Such entry consists of Tn's unique I.D.,
Tn's initiating site (i.e., the site where Tn enters and exits the system), list of records
and fields Tn read or updated, and their status (temporary, aborted, committed), and so
far accumulated Tn's conflict history. 00 log algorithm checks whether there is any DO
log entry conflicting with new entry. If there is, then Tn creates its conflict history for a
given DO. The conflict history is the list of conflicting transactions reads and updates in
the same order as they are in DO log. At the next DO Tn deposits its so far accumulated
conflict history and updates it from that DO. The idea is that as Tn hops from one DO (or
site) to another it deposits at each 00 its cumulative conflict history which says with
what other transactions Tn conflicted, where and how (i.e., read-read, read-update,
update-update).

Since every transaction generates its conflict history then if two transactions, say Ti
and T2, conflict they can determine at once, or when both terminated, whether they
generated nonserializable execution. To explain this consider TI and T2 updating DO's 1,
2 and 3 in the same and opposite orders. As long as, say, Ti precedes T2 in any
update-update, or read-update conflict at all DO's, then the execution is serializable. If
Ti and T2 execute at 1, 2 and 3 in the same order, then both can immediately detect
nonserializable execution. Consider the following scenario. TI updated I before TZ.

14

However, at 2 T2 got ahead of TI and updated 2 before TI. At this point Ti can decide
from T2's conflict history (which is a part of T2 DO log entry at 2) that TI and T2
generate nonserializable execution. Ti can also decide from its and T2's conflict history
what is the best way to restore serializable execution. In our scenario TI sends T2 "roll
back up to 2" message. When T2 reaches 2 TI and T2 can resume execution at 2 in
correct order.

However, if TI and T2 execute at 1, 2 and 3 in the opposite order, then TI and T2
can detect their nonserializable execution only after they terminated as follows. After
TI and T2 terminated they both know that they conflicted in a serializable way in 2 DO's
(either 1, 2 or 2, 3). However, Ti neither T2 know whether they conflicted at the 3rd
DO. One way they can find out is by exchanging their conflict histories at their initiating
sites (where they return after the computation). This exchange will enable their partial
roll-back and recovery to serializable execution. (More detailed description of CC
mechanism behaviour when more than two transactions conflict can be found Appendix or

in [BAD79bl)

Of course, another way to find out whether TI and T2 generated nonserializable
execution is by using two-phase commit when upon termination each transaction would
check at each site for nonserializable execution and for termination (or commit) of
preceding interfering transactions.. For example, consider TI and T2 executing in the
opposite order. Let's assume that TI and T2 do not generate their conflict histories.
When TI or T2 terminate they con make their temporary version permanent by using 3
messages of two-phase comit protocol. That is to say the inititating site of TI or T2
sends one message to each site it accessed. Such message is acknowledged and a
relevant subset of DO log is returned also. Then the initiating site can decide whether
its transaction a) generated nonserializable execution, b) has to wait for termination of
preceding transaction in order to determine serializability of its execution.

Assume that T1 terminates first and tries to commit. From the first message of 2PC
and its acknowledgement TI can determine that it conflicted with T2, i.e., T2 preceded
TI at some DO. Therefore, before TI can make its output permanent, it must wait for
T2 to make its output permanent. However, T2 when it attempts to commit will detect
nonserializable execution and will initiate recovery to serializable execution. CC
overhead for 2PC variation of MEO class CC mechanism is essentially identical to the CC
overhead of time stamp based S class CC mechanism described in section 3.2.

We want to emphasize that TI and T2 can detect nonserializable execution in two
equivalent ways. One is during 2PC and the other is by a) transaction conflict history
mechanism, and b) by communication between transaction initiating sites. Obviously in
terms of CC overhead the second way is much more effective.

15

2PC is used to make the update of multiple copies to appear as an atomic action,
i.e., either all updates are installed or none. In the CC mechanism proposed in [BAD79b]
and also described here, the transaction FORK operation, as multiple copy update, is
seen as a FORK of transaction process which then must JOIN at transaction initiating site.
There the transaction can decide whether all updates have been posted (as temporary
ones) and whether it generated serializable execution (either immediately or after
waiting for preceding conflicting transaction(s)).

We now derive CC overhead for the S class CC mechanism proposed in [BAD79b]
and also described in this section. The mechanism uses DO logs, transaction conflict
histories, initiating sites communication, deletion of DO log entries and commit of
temporary DO versions by piggybacking on ongoing network traffic. The CC no-conflict
overhead is in the worst case 2T and in the best case none. 2T is due to "virtual'
conflicts when executing transaction "bumps" into undeleted O0 log entries of k
terminated transactions (2k messages). Assuming the best and the worst cases to occur
with the same probability, then the average CC no-conflict overhead for MEO class is:

CC delay = T

number of CC messages = k

MEO class CC conflict overhead for scenario I is as follows. Ti and T2 reading,
updating and conflicting at sites 1, 2 and 3 in opposite order will have to terminate first
before detecting nonserializable execution. Assume that TI terminated first and T2
during T. Then the detection of nonserializable execution occurs by TI talking to T2
initiating site after T2 terminated and by inspecting each other's conflict histories.
Resulting CC delay is 2T and 2 messages are involved. Scenario 2 generates CC delay
GELTA T and no messages. By averaging the CC conflict overhead from both scenarios
we obtain:

CC delay = T + 1/2 DELTA T

number of CC messages = 1

4. Conclusion

In this paper we have analyzed three distributed CC mechanisms belonging to three
different CC classes in terms of CC overhead, i.e., the number of CC messages and
corresponding delay. We have also shown that they differ in the degree of concurrency
they provide. We can conclude that in terms of CC overhead and degree of concurrency
the nonblocking CC mechanisms outperform blocking CC mechanisms, or in another words,
MEO class outperforms S class which outperforms MES class. However, the results

16

derived in this paper, although useful for CC mechanisms comparison, must be
interpreted within the distributed database system and application parameter space as
done in [BAD8Oa, MOL79, RIE79]. This is to say that although CC is the most important
mechanism of distributed DBMS the derived results should not be interpreted as an
absolute indication of distributed DBMS performance. For example, even if MEO class
provides the lowest CC overhead the distributed DBMS might perform better under
another CC mechanism for some applications or networks. In other words, as indicated in
(BAO8Oa] each class of CC mechanisms might be most suitable for certain classes of
applications and DBMS system parameters.

5. Acknowledgement

The author would like to acknowledge support of the NPS Foundation Research
Program for this work. The author also wishes to express his appreciation to one of the
referees for his valuable comments.

References

[ALS76] Alsberg, P. et al. "Multi-copy resiliency techniques," Center for Advanced
Computation, Report CA 6202, University of Illinois, Urbana-Champaign, May 1976.

(BAD78] Badal, D. Z. and Popek, G. J. "A proposal for disttributed concurrency control
for partially replicated distributed databases," Proc. of the 3rd Berkeley Conference on
Distributed Data Management and Computer Networks, August 1978.

[BAD79a] Badal, D. Z. "Concurrency control and semantic integrity enforcement in
distributed databases," Infotech State of the Art Report on Distributed Databases,
Infotech 1979.

(BAD79b] Badal, 0. Z. "Correctness of coacurrency control and implications in distributed
databases," Proc. of COMPSAC 79, Chicago, November 1979.

[BAD80] Badal, D. Z. "On the degree of concurrency provided by concurrency control
mechanisms for distributed databases," Proc. of the Inter. Symposium on Distributed
Databases, Paris, France, March 1980.

[BAD8Oa] Badal, D. Z. "The analysis of the effects of concurrency control on distributed
database system performance," Proc. of the 6th Intern. Conference on Very Large Data
Bases, Montreal, October 1980.

.17

[BER78) Bernstein, P. A. et al. "The concurrency control mechanism of SOD-1. A System
for Distributed Databases," IEEE Transactions on Software Engineering 4, 3(May 1 978).

[ELL77[Ellis, C. "A robust algorithm for updating duplicate databases," Proc. of the 2nd
Berkeley Workshop on Distributed Data Management and Networks May 1977.

[ESW76] Eswaran, K. P. et al. "The notions of consistency and predicate locks in a
database system," CACM 1 9, 11 (November 1 976).

!GEL78) Gelenbe, E. and Sevcik, K. "Analysis of update synchronization for multiple copy
data bases," ibid BAD78.

(GEL79] Gelenbe, E. and Sevcik, K. "Analysis of update synchronization for multiple copy
data bases," IEEE Transactions on Computers 28, 10 (October 1979).

(GRA78] Gray, J. "Notes on database operating systems," IBM Research Report RJ 2188,
February 1978.

[GRA80] Gray, J. Personal communication.

(GRA8Oa] Gray, J. "A transaction model," in Automata, Languages and Programming.
Lecture Notes in Computer Science 85, Springer-Verlag, 1980.

(HER79[Herman, 0. et al. "An algorithm for mainta;ning the consistency of multiple
copies," ibid KAN79.

[KEL73] Keller, R. M. "Parallel program schemata and maximal parallelism," JACM 3 (July
1973) and JACM 20 (October 1979).

[KUN79I Kung, H. T. and Robinson, J. T. "On optimistic methods for concurrency control,"
Proc. of VLDB Conference, Rio de Janeiro, Brazil, October 1979.

(LAM78] Lamport, L. "Time, clocks, and the ordering of events in a distributed system,"
CACM 21, 7 (July 1978). March 1976.

[LEL78] LeLann, G. "Algorithms for distributed data-sharing systems which use tickets,"
ibid BAD78.

!LID79] Lindsay, G. B. et al. "Notes on distributed databases," IBM Research Report RJ
2571, July 1979.

(LIN791 Lin, W. K. "Concurrency control in a multiple copy distributed database system,"
ibid BA078.

18

[MIN78] Minoura, T. "Maximally concurrent transaction processing," ibid BAD78.

[MOL79] Garcia-Molina, H. "Performance of update algorithms for replicated data in a
distributed database,' Ph.D. dissertation, Dept. of Computer Science, Stanford University,
June 1979.

[PAP79] Papadimitriou, C. M. "Serializability of concurrent database updates," JACM 26,
4 (October 1979).

[REE78] Reed, D. P. "Naming and synchronization in decentralized computer systems,"
MIT/LCS/TR-205, MIT, Laboratory for Computer Science, September 1978.

[RIE79] Ries, D. R. "The effects of concurrency control on database management system
performance," Ph.D. dissertation, Computer Science Dept., University of California,
Berkeley, April 1 979.

[RIE79aJ Ries, D. R. Personal communication.

[ROS78] Rosenkrantz, D. J. et al. "System level concurrency control for distributed
database systems," ACM TODS 3, 2 (June 1978).

[ST078] Stonebraker, M. "Concurrency control of multiple copies of data in distributed
INGRES," ibid BAD78.

[TH076] Thomas, R. "A solution to the update problem for multiple copy data bases
which use distributed control," BBN Report 3340, July 1976.

[TH079] Thomas, R. "A solution to the concurrency control problem for multiple copy
databases," ACM TODS 4, 2 (June 1 979).

19

Appendi x

In order to demonstrate the behaviour of CC mechanism when more than two
transactions conflict, let's consider an example of three conflicting transactions. Assume
that TI reads and updates at sites I and 2, T2 reads and updates at 2 and 3, and T3
reads and updates at 3 and 1. The transactions arrive short time apart and they conflict
at each site they accessed as follows. At site I T3 precedes Ti, at site 2 TI precedes
T2, and at site 3 T2 precedes T3. This means that TI knows from its conflict history
that upon its termination it should send its conflict history to the initiating site of T3.
Similarly, T2 and T3 send their conflict histories to the initiating sites of TI and T2.
Each initiating site now constructs a precedence relation and checks it with other
initiating sites. At that time the nonserializable execution is detected because the
precedence relations will be inconsistent. In our example, Ti initiating site after
receiving T2's conflict history knows that T3 precedes TI precedes T2. The initiating
site of T2 knows that TI precedes T2 precedes T3 and the initiating site of T3 knows
that T2 precedes T3 precedes TI. In the next step of initiating site communication T1,
T2 and T3 independently detect nonserializable execution which is due to a cycle of
conflicts. Now the cycle must be broken in order to recover to serializable execution. In
our example the initiating site of Ti, T2 and T3 have the same, and complete,
information about the conflict cycle to make independently the same decision - to
rollback. In order to avoid cyclic restart and rollback, they can restart at different time,
i.e., with different delay. Such decision can be again made by each transaction
independently by using, perhaps, their ID's. This example shows how the described CC
mechanism would cope with a highly unlikely situation of three (or more) transaction
conflicts.

20

INITIAL DISTRIBUTION LIST

Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22314

Dudley Knox Library 2
Code 0142
Naval Postgraduate School
Monterey, CA 93940

Office of Research Administration1
Code 012A
Naval Postgraduate School
Monterey, CA 93940

Chairman, Code 526z 30
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93940

D. Z. Badal, Code 52Zd 10
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93940

Robert B. Grafton 2
Office of Naval Research
Code 437
800 N. Quincy Street
Arlington, VA 22217

21

